Examveda What is the value of 5sin260° + 7sin245°+ 8cos245°? A. 25B. $$\frac{{57}}{4}$$C. $$\frac{{45}}{4}$$D. 10Answer: Option C Solution (By Examveda Team) $$\eqalign{ & 5{\sin ^2}{60^ \circ } + 7{\sin ^2}{45^ \circ } + 8{\cos ^2}{45^ \circ } \cr & = 5{\left( {\frac{{\sqrt 3 }}{2}} \right)^2} + 7{\left( {\frac{1}{{\sqrt 2 }}} \right)^2} + 8{\left( {\frac{1}{{\sqrt 2 }}} \right)^2} \cr & = \frac{{15}}{4} + \frac{7}{2} + \frac{8}{2} \cr & = \frac{{15 + 14 + 16}}{4} \cr & = \frac{{45}}{4} \cr} $$ This Question Belongs to Arithmetic Ability >> Trigonometry
Solution (By Examveda Team) $$\eqalign{ & 5{\sin ^2}{60^ \circ } + 7{\sin ^2}{45^ \circ } + 8{\cos ^2}{45^ \circ } \cr & = 5{\left( {\frac{{\sqrt 3 }}{2}} \right)^2} + 7{\left( {\frac{1}{{\sqrt 2 }}} \right)^2} + 8{\left( {\frac{1}{{\sqrt 2 }}} \right)^2} \cr & = \frac{{15}}{4} + \frac{7}{2} + \frac{8}{2} \cr & = \frac{{15 + 14 + 16}}{4} \cr & = \frac{{45}}{4} \cr} $$
The equation $${\cos ^2}\theta $$ = $$\frac{{{{\left( {x + y} \right)}^2}}}{{4xy}}$$ is only possible when ? A. x = -yB. x > yC. x = yD. x < y View Answer
Join The Discussion