What is the value of cos15° - cos165°?
A. $$\frac{{\sqrt 3 }}{{\sqrt 2 }}$$
B. $$\frac{2}{{\sqrt 3 - 1}}$$
C. $$\frac{{\sqrt 3 + 1}}{{\sqrt 2 }}$$
D. $$\frac{{\sqrt 3 + 1}}{2}$$
Answer: Option C
Solution (By Examveda Team)
\[\begin{array}{l}
\cos {15^ \circ } - \cos {165^ \circ }\\
= \cos {15^ \circ } - \cos \left( {{{180}^ \circ } - {{15}^ \circ }} \right)\\
= \cos {15^ \circ } + \cos {15^ \circ }\\
= 2\cos {15^ \circ }\\
= 2\left( {\frac{{\sqrt 3 + 1}}{{2\sqrt 2 }}} \right)\\
= \frac{{\sqrt 3 + 1}}{{\sqrt 2 }}\\
{\bf{Note:}}\\
\left[ \begin{array}{l}
\cos {15^ \circ } = \cos \left( {{{45}^ \circ } - {{30}^ \circ }} \right)\\
= \cos {45^ \circ }\cos {30^ \circ } + \sin {45^ \circ }\sin {30^ \circ }\\
= \frac{1}{{\sqrt 2 }} \times \frac{{\sqrt 3 }}{2} + \frac{1}{{\sqrt 2 }} \times \frac{1}{2}\\
= \frac{{\sqrt 3 + 1}}{{2\sqrt 2 }}
\end{array} \right]
\end{array}\]
Join The Discussion