Solution (By Examveda Team)
Female population below poverty line for state P = 2.1 million.
Let the male population below poverty line for state P be x million.
Then,
$$\eqalign{
& 5:6 = x:2.1 \cr
& \Rightarrow \frac{x}{2.1} = \frac{5}{6} \cr
& \Rightarrow x = \frac{2.1\times5}{6} \cr
& \Rightarrow x = 1.75 \cr} $$
∴ Population below poverty line for state P
= (2.1 + 1.75) million
= 3.85 million
Let the population above poverty line for state P be y million.
Since, 35% of the total population of state P is below poverty line, therefore 65% of the total population of state P is above poverty line. So, the ratio of population below poverty line to that above poverty line for state P is 35 : 65.
$$\eqalign{
& \therefore 35 : 65 = 3.85 : y \cr
& \Rightarrow y = \frac{65\times3.85}{35} \cr
& \Rightarrow y = 7.15 \cr} $$
∴ Population above poverty line for state P = 7.15 million and so, male population above poverty line for state P
$$\eqalign{
& = \left(\frac{6}{13}\times 7.15\right) \text{million} \cr
& = 3.3 \text{ million} \cr} $$
Join The Discussion