What will come at place of x, (x < 10) for $$\frac{{\left( {132 \div 12 \times x - 3 \times 3} \right)}}{{\left( {{5^2} - 6 \times 4 + {x^2}} \right)}} = 1?$$
A. 2
B. 4
C. 3
D. 1
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & \frac{{132 \div 12 \times x - 3 \times 3}}{{{5^2} - 6 \times 4 + {x^2}}} = 1 \cr & 11 \times x - 9 = 25 - 24 + {x^2} \cr & 11x - 9 = 1 + {x^2} \cr & {x^2} + 1 + 9 - 11x = 0 \cr & {x^2} - 11x + 10 = 0 \cr & {x^2} - 10x - x + 10 = 0 \cr & x\left( {x - 10} \right) - 1\left( {x - 10} \right) = 0 \cr & \left( {x - 10} \right)\left( {x - 1} \right) = 0 \cr & x = 10,\,1 \cr & {\text{For the condition}}\left( {x < 10} \right) \cr & x = 1 \cr} $$Related Questions on Simplification
A. 20
B. 80
C. 100
D. 200
E. None of these
A. Rs. 3500
B. Rs. 3750
C. Rs. 3840
D. Rs. 3900
E. None of these

Join The Discussion