When a body is subjected to a direct tensile stress ($${\sigma _{\text{x}}}$$) in one plane accompanied by a simple shear stress ($${\tau _{{\text{xy}}}}$$ ), the maximum shear stress is
A. $$\frac{{{\sigma _{\text{x}}}}}{2} + \frac{1}{2}\sqrt {\sigma _{\text{x}}^2 + 4\tau _{{\text{xy}}}^2} $$
B. $$\frac{{{\sigma _{\text{x}}}}}{2} - \frac{1}{2}\sqrt {\sigma _{\text{x}}^2 + 4\tau _{{\text{xy}}}^2} $$
C. $$\frac{{{\sigma _{\text{x}}}}}{2} + \frac{1}{2}\sqrt {\sigma _{\text{x}}^2 - 4\tau _{{\text{xy}}}^2} $$
D. $$\frac{1}{2}\sqrt {\sigma _{\text{x}}^2 + 4\tau _{{\text{xy}}}^2} $$
Answer: Option D
Can anyone explain it?