When a body is subjected to direct tensile stresses ($${\sigma _{\text{x}}}$$ and $${\sigma _{\text{y}}}$$) in two mutually perpendicular directions, accompanied by a simple shear stress $${\tau _{{\text{xy}}}}{\text{,}}$$ then in Mohr's circle method, the circle radius is taken as
A. $$\frac{{{\sigma _{\text{x}}} - {\sigma _{\text{y}}}}}{2} + \tau $$
B. $$\frac{{{\sigma _{\text{x}}} + {\sigma _{\text{y}}}}}{2} + \tau $$
C. $$\frac{1}{2}\sqrt {{{\left( {{\sigma _{\text{x}}} - {\sigma _{\text{y}}}} \right)}^2} + 4\tau _{{\text{xy}}}^2} $$
D. $$\frac{1}{2}\sqrt {{{\left( {{\sigma _{\text{x}}} + {\sigma _{\text{y}}}} \right)}^2} + 4\tau _{{\text{xy}}}^2} $$
Answer: Option C
Join The Discussion