When a pair of dice is thrown, what is the probability of the sum of numbers being odd?
A. 1
B. 0.25
C. 0.4
D. 0.5
Answer: Option D
Solution (By Examveda Team)
Total events = 62 = 36Sum odd = 1, 3, 5, 7, 9, 11
3 = (1, 2)(2, 1)
5 = (1, 4)(4, 1)(2, 3)(3, 2)
7 = (1, 6)(6, 1)(2, 5)(5, 2)(3, 4)(4, 3)
9 = (3, 6)(6, 3)(4, 5)(5, 4)
11 = (6, 5)(5, 6)
$${\text{Probability}} = \frac{{18}}{{36}} = \frac{1}{2} = 0.5$$
Related Questions on Probability
A. $$\frac{{1}}{{2}}$$
B. $$\frac{{2}}{{5}}$$
C. $$\frac{{8}}{{15}}$$
D. $$\frac{{9}}{{20}}$$
A. $$\frac{{10}}{{21}}$$
B. $$\frac{{11}}{{21}}$$
C. $$\frac{{2}}{{7}}$$
D. $$\frac{{5}}{{7}}$$
A. $$\frac{{1}}{{3}}$$
B. $$\frac{{3}}{{4}}$$
C. $$\frac{{7}}{{19}}$$
D. $$\frac{{8}}{{21}}$$
E. $$\frac{{9}}{{21}}$$
What is the probability of getting a sum 9 from two throws of a dice?
A. $$\frac{{1}}{{6}}$$
B. $$\frac{{1}}{{8}}$$
C. $$\frac{{1}}{{9}}$$
D. $$\frac{{1}}{{12}}$$

Join The Discussion