Which of the following gives the average value or expectation of the function g(X) of the random variable X?
(Given f(X) is the probability density function)
A. $$E\left[ {g\left( X \right)} \right] = \int\limits_{ - \infty }^\infty {g\left( X \right)dx} $$
B. $$E\left[ {g\left( X \right)} \right] = \int\limits_{ - \infty }^\infty {g\left( X \right)f\left( X \right)dx} $$
C. $$E\left[ {g\left( X \right)} \right] = \int\limits_{ - \infty }^\infty {{g^ * }\left( X \right)dx} $$
D. $$E\left[ {g\left( X \right)} \right] = \int\limits_{ - \infty }^\infty {\frac{{g\left( X \right)}}{{f\left( X \right)}}dx} $$
Answer: Option B
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion