Which of the following integrals is unbounded?
A. \[\int\limits_0^{\frac{\pi }{4}} {\tan {\text{x dx}}} \]
B. \[\int\limits_0^\infty {\frac{1}{{{{\text{x}}^2} + 1}}{\text{dx}}} \]
C. \[\int\limits_0^\infty {{\text{x}}{{\text{e}}^{ - {\text{x}}}}{\text{ dx}}} \]
D. \[\int\limits_0^1 {\frac{1}{{1 - {\text{x}}}}{\text{dx}}} \]
Answer: Option D
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion