Which of the following is equal to $$\left[ {\frac{{\tan \theta + \sec \theta - 1}}{{\tan \theta - \sec \theta + 1}}} \right]?$$
A. $$\frac{{1 + \sin \theta }}{{\cos \theta }}$$
B. $$\frac{{1 + \tan \theta }}{{\cot \theta }}$$
C. $$\frac{{1 + \cos \theta }}{{\sin \theta }}$$
D. $$\frac{{1 + \cot \theta }}{{\tan \theta }}$$
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{
& \left[ {\frac{{\tan \theta + \sec \theta - 1}}{{\tan \theta - \sec \theta + 1}}} \right] \cr
& = \left[ {\frac{{\tan \theta + \sec \theta - \left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)}}{{\left( {\tan \theta - \sec \theta + 1} \right)}}} \right] \cr
& = \frac{{\left( {\sec \theta + \tan \theta } \right)\left[ {1 - \sec \theta + \tan \theta } \right]}}{{\left( {\tan \theta - \sec \theta + 1} \right)}} \cr
& = \sec \theta + \tan \theta \cr
& = \frac{1}{{\cos \theta }} + \frac{{\sin \theta }}{{\cos \theta }} \cr
& = \frac{{1 + \sin \theta }}{{\cos \theta }} \cr} $$
Join The Discussion