Which of the following pairs of operators commute?
A. $$x{\text{ and }}\frac{d}{{dx}}$$
B. $$\frac{d}{{dx}}{\text{ and }}\frac{{{d^2}}}{{d{x^2}}} + \frac{{2d}}{{dx}}$$
C. $${x^2}\frac{d}{{dx}}{\text{ and }}\frac{{{d^2}}}{{d{x^2}}}$$
D. $${x^3}{\text{ and }}\frac{d}{{dx}}$$
Answer: Option B
A. 99.7 × 10-12 m
B. 199.4 × 10-12 m
C. 199.4 × 10-18 m
D. 99 × 10-6 m
A. $$\exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)$$
B. $${\left[ {1 - \exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)} \right]^{ - 1}}$$
C. $$\exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right){\left[ {1 - \exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)} \right]^{ - 1}}$$
D. $$\exp \left( { - \frac{{h\nu }}{{2{K_B}T}}} \right){\left[ {1 - \exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)} \right]^{ - 1}}$$
A. 4 × 104 (nm)2
B. 10$$\sqrt 2 $$ (nm)1/2
C. $$\sqrt 2 $$ /10 (nm)-1/2
D. 0.1 (nm)-1/2
A. $$\Delta \varepsilon _n^{\left( 1 \right)} = \gamma $$
B. $$\Delta \varepsilon _n^{\left( 1 \right)} = {\gamma ^2}$$
C. $$\Delta \varepsilon _n^{\left( 1 \right)} = {\gamma ^{ - 1}}$$
D. $$\Delta \varepsilon _n^{\left( 1 \right)} = 0$$

Join The Discussion