Which one of the following is the inverse z-transform of $$X\left( z \right) = \frac{z}{{\left( {z - 2} \right)\left( {z - 3} \right)}},\,\left| z \right| < 2?$$
A. [2n - 3n] u(-n - 1)
B. [3n - 2n] u(-n - 1)
C. [2n - 3n] u(n + 1)
D. [2n - 3n] u(n)
Answer: Option A
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion