With the following equations, the time invariant systems are
$$\eqalign{
& 1.\,\frac{{{d^2}y\left( t \right)}}{{d{t^2}}} + 2t\frac{d}{{dt}}y\left( t \right) + 5y\left( t \right) = x\left( t \right) \cr
& 2.\,y\left( t \right) = {e^{ - 2x\left( t \right)}} \cr
& 3.\,y\left( t \right) = \left[ {\frac{d}{{dt}}x\left( t \right)} \right] \cr
& 4.\,y\left( t \right) = \frac{d}{{dt}}\left[ {{e^{ - 2t}}x\left( t \right)} \right] \cr} $$
A. 1 and 2
B. 1 and 4
C. 2 and 3
D. 3 and 4
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion