5 persons live in a tent. If each person requires 16 m2 of floor area and 100 m3 space for air then the height of the cone of smallest size to accommodate these persons would be?
A. 16 m
B. 18.75 m
C. 10.25 m
D. 20 m
Answer: Option B
Solution (By Examveda Team)
Let the height of cone h metre⇒ Total area of ground will be required = 5 × 16 m2 = 80 m2
⇒ Total volume of air is needed = 100 × 5 m3 = 500 m3
According to the question
⇒ Volume of cone = 500 m3
⇒ $$\frac{1}{3}$$ × area of ground × height = 500
⇒ $$\frac{1}{3}$$ × πr2 × h = 500
⇒ $$\frac{1}{3}$$ × 80 × h = 500
⇒ Height = $$\frac{{500 \times 3}}{{80}}$$
⇒ Height of cone = 18.75 metres
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion