A ball of lead 4 cm in diameter is covered with gold. If the volume of the gold and lead are equal, then the thickness of gold (given $$\root 3 \of 2 $$ = 1.259) is approximately
A. 5.038 cm
B. 5.190 cm
C. 1.038 cm
D. 0.518 cm
Answer: Option D
Solution (By Examveda Team)

$$\eqalign{ & {\text{Volume of lead}} = \frac{4}{3}\pi {r^3} \cr & {\text{Volume of gold}} = \frac{4}{3}\pi {R^3} - \frac{4}{3}\pi {r^3} \cr & {\text{According to the question,}} \cr & \frac{4}{3}\pi {R^3} - \frac{4}{3}\pi {r^3} = \frac{4}{3}\pi {r^3} \cr & \frac{4}{3}\pi {R^3} = \frac{8}{3}\pi {r^3} \cr & {R^3} = 2{r^3} \cr & {R^3} = 2{\left( 2 \right)^3} \cr & R = \root 3 \of 2 \times 2 \cr & R = 1.259 \times 2 \cr & R = 2.518 \cr & \therefore {\text{Thickness}} = R - r \cr & = 2.518 - 2 \cr & = 0.518{\text{ cm}} \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion