A cone, a hemisphere and a cylinder stand on equal bases and have the same height. The ratio of their respective volume is
A. 1 : 2 : 3
B. 2 : 1 : 3
C. 1 : 3 : 2
D. 3 : 1 : 2
Answer: Option A
Solution (By Examveda Team)
In this case height of cylinder and cone is equal to the radius of hemisphere⇒ h = r
Ratio of volumes
\[\begin{array}{*{20}{c}} {}&{{\text{Cone}}}&{}&{{\text{Hemisphere}}}&{}&{{\text{Cylinder}}} \\ = &{\frac{1}{3}\pi {r^2} \times r}&:&{\frac{2}{3}\pi {r^3}}&:&{\pi {r^2} \times r} \\ = &1&:&2&:&3 \end{array}\]
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion