A cylindrical vessel whose base is horizontal and is of internal radius 3.5 cm contains sufficient water so that when a solid sphere is placed inside, water just covers the sphere. The sphere fits in the Cylinder exactly. The depth of water in the vessel before the sphere was put, is
A. $$\frac{{35}}{3}{\text{ cm}}$$
B. $$\frac{{17}}{3}{\text{ cm}}$$
C. $$\frac{7}{3}{\text{ cm}}$$
D. $$\frac{{14}}{3}{\text{ cm}}$$
Answer: Option C
Solution (By Examveda Team)

Height of water after ball is immersed = 3.5 × 2 = 7 cm
$$\eqalign{ & \Rightarrow {\text{Volume of water}} = \pi {r^2}h - \frac{4}{3}\pi {r^3} \cr & = \pi {r^2}\left( {h - \frac{4}{3}r} \right) \cr & = \frac{{22}}{7} \times 3.5 \times 3.5\left( {7 - \frac{4}{3} \times 3.5} \right) \cr & = 11 \times 3.5\left( {\frac{7}{3}} \right) \cr & = \frac{{269.5}}{3}{\text{ c}}{{\text{m}}^3} \cr} $$
Volume of water before ball was immersed
$$\eqalign{ & \Rightarrow \pi {\left( {3.5} \right)^2} \times h = \frac{{269.5}}{3} \cr & h = \frac{{269.5 \times 7}}{{3 \times 3.5 \times 3.5 \times 22}} \cr & h = \frac{7}{3}{\text{ cm}} \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion