Solution (By Examveda Team)
$$\eqalign{
& P{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^3} = 8P \cr
& \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^3} = 8 \cr
& {\text{Let }}P{\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} = 16P \cr
& \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} = 16 = {2^4} = {\left( {{2^3}} \right)^{\frac{4}{3}}} \cr
& \Rightarrow {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^n} = {\left( 8 \right)^{\frac{4}{3}}} \cr
& \Rightarrow {\left\{ {{{\left( {1 + \frac{{\text{R}}}{{100}}} \right)}^3}} \right\}^{\frac{4}{3}}} = {\left( {1 + \frac{{\text{R}}}{{100}}} \right)^4} \cr
& \Rightarrow n = 4 \cr
& \therefore {\text{ Required time 4 years}} \cr} $$
Join The Discussion