A hemispherical cup of radius 4 cm is filled to the brim with coffee. The coffee is then poured into a vertical cone of radius 8 cm and height 16 cm. The percentage of the volume of the cone that remains empty is:
A. 87.5%
B. 80.5%
C. 81.6%
D. 88.2%
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & {\text{Volume of coffee}} = \frac{2}{3}\pi {r^3} \cr & = \frac{2}{3} \times \frac{{22}}{7} \times {\left( 4 \right)^3} \cr & = \frac{{128}}{3}\pi {\text{ c}}{{\text{m}}^3} \cr & {\text{Volume of cone}} = \frac{1}{3}\pi {r^2} \times h \cr & = \frac{1}{3}\pi {\left( 8 \right)^2} \times 16 \cr & = \frac{{1024}}{3}\pi \cr & \therefore {\text{Required percentage}} = \frac{{\frac{{1024}}{3} - \frac{{128}}{3}}}{{\frac{{1024}}{3}}} \times 100 \cr & = \frac{{896}}{{1024}} \times 100 \cr & = 87.5\% \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion