A hemispherical depression of diameter 4 cm is cut out from each face of a cubical block of sides 10 cm. Find the surface area of the remaining solid (in cm2). $$\left( {{\text{Use }}\pi = \frac{{22}}{7}} \right)$$
A. $$900\frac{4}{7}$$
B. $$112\frac{4}{7}$$
C. $$675\frac{3}{7}$$
E. $$713\frac{1}{7}$$
Answer: Option C
Solution (By Examveda Team)
Side of cubical block = 10 cm∴ Area of each face of cubical block = 102 = 100 cm2
Radius of Hemisphere = $$\frac{4}{2}$$ = 2 cm
Surface area of hemisphere
$$\eqalign{ & = 2\pi {r^2} \cr & = 2 \times \frac{{22}}{7} \times {2^2}{\text{ c}}{{\text{m}}^2} \cr & = \frac{{176}}{7}{\text{ c}}{{\text{m}}^2} \cr} $$
Total surface area of hemisphere $$ = 6 \times \frac{{176}}{7} = \frac{{1056}}{7}{\text{ c}}{{\text{m}}^2}$$
Remaining surface area of each face of cubical block
$$\eqalign{ & = {10^2} - 2\pi r \cr & = 100 - 2 \times \frac{{22}}{7} \times 2{\text{ c}}{{\text{m}}^2} \cr & = 100 - \frac{{88}}{7}{\text{ c}}{{\text{m}}^2} \cr & = \frac{{612}}{7}{\text{ c}}{{\text{m}}^2} \cr} $$
∴ Total surface area of 6 remaining cubical block $$ = 6 \times \frac{{612}}{7} = \frac{{3672}}{7}{\text{ c}}{{\text{m}}^2}$$
∴ Surface area of remaining solid
$$\eqalign{ & = \left( {\frac{{1056}}{7} + \frac{{3672}}{7}} \right){\text{c}}{{\text{m}}^2} \cr & = \frac{{4728}}{7}{\text{ c}}{{\text{m}}^2} \cr & = 675\frac{3}{7}{\text{ c}}{{\text{m}}^2} \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion