A hemispherical tank full of water is emptied by a pipe at the rate of 7.7 litres per second. How much time (in hours) will it take to empty $$\frac{2}{3}$$ part of the tank, if the internal radius of the tank is 10.5 m?
A. $$\frac{{185}}{3}$$
B. $$\frac{{185}}{6}$$
C. $$\frac{{175}}{3}$$
D. $$\frac{{175}}{2}$$
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & 7.7{\text{ Ltr/sec}} \cr & r = 10.5{\text{ cm}} \cr & {\text{V}} = \frac{2}{3}\pi {r^3} \times \frac{2}{3} \cr & = \frac{{\frac{2}{3} \times \frac{2}{3} \times \frac{{22}}{7} \times 10.5 \times 10.5 \times 10.5 \times 1000}}{{7.7 \times 60 \times 6000}} \cr & = \frac{{20 \times 105}}{{36}} \cr & = \frac{{175}}{3}{\text{ hours}} \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion