A line passing through the origin perpendicularly cuts the line 3x - 2y = 6 at point M. Find the co-ordinates of M.
A. $$\left( {\frac{{18}}{{13}},\,\frac{{12}}{{13}}} \right)$$
B. $$\left( {\frac{{18}}{{13}},\,\frac{{ - 12}}{{13}}} \right)$$
C. $$\left( {\frac{{ - 18}}{{13}},\,\frac{{ - 12}}{{13}}} \right)$$
D. $$\left( {\frac{{ - 18}}{{13}},\,\frac{{12}}{{13}}} \right)$$
Answer: Option B
Solution (By Examveda Team)
Equation of line perpendicular to line 3x - 2y = 6 is 2x + 3y + p = 0
As, the line passes through origin (0, 0)
∴ 2 × 0 + 3 × 0 + p = 0
∴ p = 0
Now, the equation is 2x + 3y = 0
∴ 2x = -3y
x = $$\frac{{ - 3}}{2}$$ y
By putting this value in equation 3x - 2y = 6
$$\eqalign{ & \Rightarrow 3\left( {\frac{{ - 3}}{2}} \right)y - 2y = 6 \cr & \Rightarrow \frac{{ - 9}}{2}y - 2y = 6 \cr & \Rightarrow \frac{{ - 13y}}{2} = 6 \cr & \Rightarrow y = - \frac{{12}}{{13}} \cr & \therefore x = \frac{{ - 3}}{2} \times \left( {\frac{{ - 12}}{{13}}} \right) \cr & x = \frac{{18}}{{13}} \cr & \therefore {\text{Co - ordinate of point}} \cr & {\text{M}} = \left[ {\frac{{18}}{{13}},\, - \frac{{12}}{{13}}} \right] \cr} $$
Related Questions on Coordinate Geometry
In what ratio does the point T(x, 0) divide the segment joining the points S(-4, -1) and U(1, 4)?
A. 1 : 4
B. 4 : 1
C. 1 : 2
D. 2 : 1
A. 2x - y = 1
B. 3x + 2y = 3
C. 2x + y = 2
D. 3x + 5y = 1
If a linear equation is of the form x = k where k is a constant, then graph of the equation will be
A. a line parallel to x-axis
B. a line cutting both the axes
C. a line making positive acute angle with x-axis
D. a line parallel to y-axis

Join The Discussion