A path of uniform width runs round the inside of a rectangular field 38 m long 32 m wide. If the path occupies 600 m2, then the width of the path is :
A. 5 m
B. 10 m
C. 18.75 m
D. 30 m
Answer: Option A
Solution (By Examveda Team)
Let the width of the path be xThen,
$$\left[ {\left( {38 \times 32} \right) - \left\{ {\left( {38 - 2x} \right)\left( {32 - 2x} \right)} \right\}} \right]$$ $$ = 600$$
$$\eqalign{ & \Rightarrow \left[ {1216 - \left( {1216 - 140x + 4{x^2}} \right)} \right] \cr & \Rightarrow 4{x^2} - 140x + 600 = 0 \cr & \Rightarrow {x^2} - 35x + 150 = 0 \cr & \Rightarrow {x^2} - 30x - 5x + 150 = 0 \cr & \Rightarrow \left( {x - 30} \right)\left( {x - 5} \right) = 0 \cr & \Rightarrow x = 5\,m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ {\therefore x \ne 30} \right] \cr} $$
Join The Discussion