A person covers a distance of 300 km and then returns to the starting point. The time taken by him for the outward journey is 5 hours more than the time taken for the return journey. If he returned at a speed of 10 km/h more than the speed of going. What was the speed (in km/h) for the outward journey?
A. 30
B. 15
C. 25
D. 20
Answer: Option D
Solution (By Examveda Team)
Let the speed of outward journey be $$x$$ km/hrHence, the speed of return journey will be ($$x$$ + 10) km/hr
So, time taken in return journey = $$\frac{{300}}{{x + 10}}{\text{hr}}$$
Time taken in outward journey = $$\frac{{300}}{x}{\text{hr}}$$
According to the question,
$$\eqalign{ & \Rightarrow \frac{{300}}{x} - \frac{{300}}{{x + 10}} = 5 \cr & \Rightarrow \frac{{300\left( {x + 10} \right) - 300x}}{{x\left( {x + 10} \right)}} = 5 \cr & \Rightarrow 300x + 3000 - 300x = 5x\left( {x + 10} \right) \cr & \Rightarrow 3000 = 5{x^2} + 50x \cr & \Rightarrow 5{x^2} + 50x - 3000 = 0 \cr & \Rightarrow {x^2} + 30x - 20x - 600 = 0 \cr & \Rightarrow x\left( {x + 30} \right) - 20\left( {x + 30} \right) = 0 \cr & \Rightarrow \left( {x - 20} \right)\left( {x + 30} \right) = 0 \cr & \Rightarrow x = 20,\, - 30 \cr} $$
⇒ x = 20 km/hr as negative speed is not possible.
∴ The speed for outward journey is 20 km/hr
Related Questions on Speed Time and Distance
A. 48 min.
B. 60 min.
C. 42 min.
D. 62 min.
E. 66 min.
A. 262.4 km
B. 260 km
C. 283.33 km
D. 275 km
E. None of these
A. 4 hours
B. 4 hours 30 min.
C. 4 hours 45 min.
D. 5 hours

Join The Discussion