A right circular cylinder of maximum volume is cut out from a solid wooden cube. The material left is what percent of the volume (nearest to an integer) of the original cube?
A. 21
B. 28
C. 19
D. 23
Answer: Option A
Solution (By Examveda Team)

$$\eqalign{ & {V_1}{\text{ of cube}} = {a^3} \cr & {V_2}{\text{ of cylinder}} = \pi {\left( {\frac{a}{2}} \right)^2} \times a \cr & {V_1}:{V_2} = {a^3}:\frac{{22}}{7} \times \frac{{{a^3}}}{4} = 14:11 \cr & {\text{Remaining part}}:{V_1} = 3:14 \cr & \% = \frac{3}{{14}} \times 100 = \frac{{150}}{7} = 21\% \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion