A right pyramid stands on a square base of diagonal 10√2 cm. If the height of the pyramid is 12 cm, the area (in cm2) of its slant surface is
A. 520
B. 420
C. 360
D. 260
Answer: Option D
Solution (By Examveda Team)

$$\eqalign{ & {\text{Side of square}} = \frac{1}{{\sqrt 2 }} \times 10\sqrt 2 = 10{\text{ cm}} \cr & {\text{Slant height}} = \sqrt {{5^2} + {{12}^2}} = 13{\text{ cm}} \cr & {\text{Lateral surface area}} \cr & = \frac{1}{2} \times {\text{Perimeter of base}} \times {\text{Slant height}} \cr & = \frac{1}{2} \times 40 \times 30 \cr & = 260{\text{ c}}{{\text{m}}^2} \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion