A sector of radius 10.5 cm with the central angle 120° is folded to form a cone by joining the two bounding radii of the sector. What is the volume (in cm3) of the cone so formed?
A. $$\frac{{343\sqrt 2 }}{{12}}\pi $$
B. $$\frac{{343\sqrt 3 }}{{12}}\pi $$
C. $$\frac{{343\sqrt 3 }}{6}\pi $$
D. $$\frac{{343\sqrt 2 }}{6}\pi $$
Answer: Option A
Solution (By Examveda Team)

$$\eqalign{ & {\text{Length of Arc}} = L \cr & L = 2 \times \frac{{22}}{7} \times \frac{{r \times 120}}{{360}} \cr & L = 2 \times \frac{{22}}{7} \times 10.5 \times \frac{1}{3} \cr & L = 22 \cr} $$

$$\eqalign{ & 2\pi R = 22 \cr & 2 \times \frac{{22}}{7}R = 22 \cr & R = 3.5 \cr & {h^2} + {R^2} = {10.5^2} \cr & {h^2} + {3.5^2} = {10.5^2} \cr & h = 7\sqrt 2 \cr & V = \frac{1}{3}\pi {r^2}h \cr & V = \frac{1}{3}\pi \times 3.5 \times 3.5 \times 7\sqrt 2 \cr & V = \frac{{343\sqrt 2 }}{{12}}\pi \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion