A semi-circular sheet of metal of diameter 28 cm is bent into an open conical cup. The depth of the cup is approximately
A. 11 cm
B. 12 cm
C. 13 cm
D. 14 cm
Answer: Option B
Solution (By Examveda Team)

Radius of semi-circular sheet = r ⇒ $$\frac{{28}}{2}$$
r = 14 cm
Circumference of sheet = πr = 14π cm
Sheet is folded to form a cone
Let radius of cone = r1

∴ The circumference of base of cone ⇒ Circumference of sheet
∴ 2πr1 = 14π
r1 = 7 cm
∴ Radius of cone = 7 cm
Slant height = Radius of semi-circular sheet
r = 14 cm
$$\eqalign{ & \therefore {\text{Height}} = \sqrt {{{\left( {14} \right)}^2} - {{\left( 7 \right)}^2}} \cr & = \sqrt {147} \cr & = 12{\text{ cm}}\,\,\,\left( {{\text{approx}}} \right) \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion