Examveda
Examveda

A simply supported beam A carries a point load at its mid span. Another identical beam B carries the same load but uniformly distributed over the entire span. The ratio of the maximum deflections of the beams A and B, will be

A. $$\frac{2}{3}$$

B. $$\frac{3}{2}$$

C. $$\frac{5}{8}$$

D. $$\frac{8}{5}$$

Answer: Option D

Solution(By Examveda Team)

$$\eqalign{ & {\text{Deflection max }}\left( {\text{A}} \right) = \frac{{{\text{P}}{{\text{L}}^3}}}{{48{\text{E}}I}} \cr & {\text{Deflection max }}\left( {\text{B}} \right) = \frac{{5{\text{w}}{{\text{L}}^4}}}{{384{\text{E}}I}};\,\,\,\left( {{\text{w}} = \frac{{\text{P}}}{{\text{L}}}} \right) \cr & = \frac{{5{\text{P}}{{\text{L}}^3}}}{{384{\text{E}}I}} \cr & {\text{Ratio}} = \frac{{{\text{P}}{{\text{L}}^3}}}{{48{\text{E}}I}} \times \frac{{384{\text{E}}I}}{{5{\text{P}}{{\text{L}}^3}}} = \frac{8}{5} \cr} $$

This Question Belongs to Civil Engineering >> Theory Of Structures

Join The Discussion

Comments ( 5 )

  1. Bhuvnesh Verma
    Bhuvnesh Verma :
    2 years ago

    Correct answer

  2. SOMETHING AROUND
    SOMETHING AROUND :
    3 years ago

    IT WILL BE (8:5) OR (1.6:1)

  3. Atif Muneer
    Atif Muneer :
    4 years ago

    Def.max (A)= PL3/48EI;
    Def.max (B)= 5wL4/384EI; w=P/L,
    = 5PL3/384EI.
    Ratio= (PL3)/48EI * 384EI/(5PL3) = 8/5

  4. Partha Barman
    Partha Barman :
    5 years ago

    Good

  5. Satyendra Singh
    Satyendra Singh :
    6 years ago

    Wrong answer
    It should be 2/1

Related Questions on Theory of Structures

Y are the bending moment, moment of inertia, radius of curvature, modulus of If M, I, R, E, F and elasticity stress and the depth of the neutral axis at section, then

A. $$\frac{{\text{M}}}{{\text{I}}} = \frac{{\text{R}}}{{\text{E}}} = \frac{{\text{F}}}{{\text{Y}}}$$

B. $$\frac{{\text{I}}}{{\text{M}}} = \frac{{\text{R}}}{{\text{E}}} = \frac{{\text{F}}}{{\text{Y}}}$$

C. $$\frac{{\text{M}}}{{\text{I}}} = \frac{{\text{E}}}{{\text{R}}} = \frac{{\text{F}}}{{\text{Y}}}$$

D. $$\frac{{\text{M}}}{{\text{I}}} = \frac{{\text{E}}}{{\text{R}}} = \frac{{\text{Y}}}{{\text{F}}}$$