A solid brass sphere of radius 2.1 dm is converted into a right circular cylindrical rod of length 7 cm. The ratio of total surface areas of the rod to the sphere is
A. 3 : 1
B. 1 : 3
C. 7 : 3
D. 3 : 7
Answer: Option C
Solution (By Examveda Team)

$$\eqalign{ & \frac{4}{3}\pi {R^3} = \pi {r^2}h \cr & \frac{4}{3}\pi \times 21 \times 21 \times 21 = \pi \times {R^2} \times 7 \cr & {R^2} = 21 \times 21 \times 4 \cr & R = 42{\text{ cm}} \cr & \frac{{{\text{total surface area of rod}}}}{{{\text{total surface area of sphere}}}} \cr & = \frac{{2\pi r\left( {h + r} \right)}}{{4\pi {R^2}}} \cr & = \frac{{42\left( {42 + 7} \right)}}{{2 \times 21 \times 21}} \cr & = \frac{{49}}{{21}} \cr & = \frac{7}{3} \cr & = 7:3 \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion