A solid cone of height 9 cm with diameter of its base 18 cm is cut out from a wooden solid sphere of radius 9 cm. The percentage of wood wasted is:
A. 25%
B. 30%
C. 50%
D. 75%
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & {\text{Volume of sphere}} = \frac{4}{3}\pi {r^3} \cr & = \frac{4}{3}\pi {\left( 9 \right)^3} \cr & = 972\pi {\text{ c}}{{\text{m}}^3} \cr & {\text{Volume of cone}} = \frac{1}{3}\pi {r^2}h \cr & = \frac{1}{3}\pi {\left( 9 \right)^2}9 \cr & = 243\pi {\text{ c}}{{\text{m}}^3} \cr & \Rightarrow \% {\text{ of wasted wood}} \cr & = \frac{{\left( {972 - 243} \right)\pi }}{{972\pi }} \times 100 \cr & = 75\% \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion