A solid cube has side 8 cm. It is cut along diagonals of top face to get 4 equal parts. What is the total surface (in cm2) of each part?
A. 96 + 64√2
B. 80 + 64√2
C. 96 + 48√2
D. 80 + 48√2
Answer: Option A
Solution (By Examveda Team)

Total surface area of each part is = 2 × Area of base + Perimeter of base × Height

$$\eqalign{ & = 2 \times \frac{1}{2} \times 4\sqrt 2 \times 4\sqrt 2 + \left( {8 + 8\sqrt 2 } \right) \times 8 \cr & = 32 + 64 + 64\sqrt 2 \cr & = 96 + 64\sqrt 2 \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion