A solid lead sphere of radius 11 cm is melted and recast into small solid spheres of radius 2 cm each. How many maximum number (in integer) of such spheres can be made?
A. 30
B. 166
C. 100
D. 125
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & {R^3} = n \times {r^3} \cr & 11 \times 11 \times 11 = n \times {2^3} \cr & \frac{{1331}}{8} = n \cr & n = 166 \cr & n = 166{\text{ }}\left( {{\text{integer}}} \right) \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion