A solid wooden toy is in the shape of a right circular cone mounted on a hemisphere. If the radius of the hemisphere is 4.2 cm and the total height of the toy is 10.2 cm. Find the volume of wooden toy (nearly)?
A. 104 cm3
B. 162 cm3
C. 421 cm3
D. 266 cm3
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & {\text{Height of the cone}} = 10.2 - 4.2 = 6{\text{ cm}} \cr & {\text{Volume of the toy}} = \frac{1}{3}\pi {r^2}h + \frac{2}{3}\pi {r^3} \cr & = \frac{1}{3}\pi {r^2}\left( {h + 2r} \right) \cr & = \frac{1}{3} \times \frac{{22}}{7} \times {\left( {4.2} \right)^2}\left( {2 \times 4.2 + 6} \right) \cr & = \frac{1}{3} \times \frac{{22}}{7} \times {\left( {4.2} \right)^2} \times 14.4 \cr & = 266{\text{ c}}{{\text{m}}^3}{\text{ }}\left( {{\text{appx}}{\text{.}}} \right) \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion