A sphere of maximum volume is cut out from a solid hemisphere. What is the ratio of the volume of the sphere to that of the remaining solid?
A. 1 : 4
B. 1 : 3
C. 1 : 1
D. 1 : 2
Answer: Option B
Solution (By Examveda Team)

$$\eqalign{ & {\text{Sphere }}\left( {\text{V}} \right) = \frac{4}{3}\pi {\left( {\frac{R}{2}} \right)^3} = \frac{4}{3}\pi \times \frac{{{R^3}}}{8} \cr & {\text{Hemisphere }}\left( {\text{V}} \right) = \frac{2}{3}\pi {R^3} \cr & {\text{Sphere}}:{\text{Hemisphere}} = \frac{{4{R^3}}}{{3 \times 8}}:\frac{{2{R^3}}}{3} = 1:4 \cr & {\text{Sphere}}:{\text{Remaining Solid}} = 1:3 \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion