A sum of money becomes Rs. 11,880 after 4 years and Rs. 17,820 after 6 years on compound interest, if the interest is compounded annually. What is the half of the sum (in Rs.)?
A. 2,410
B. 2,640
C. 2,530
D. 2,750
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & A = P{\left( {1 + \frac{R}{{100}}} \right)^n} \cr & 11880 = P{\left( {1 + \frac{R}{{100}}} \right)^4}.\,.\,.\,.\,.\,\left( {\text{i}} \right) \cr & 17820 = P{\left( {1 + \frac{R}{{100}}} \right)^6}.\,.\,.\,.\,.\,\left( {{\text{ii}}} \right) \cr & {\text{Equation }}\left( {{\text{ii}}} \right){\text{ divide by }}\left( {\text{i}} \right) \cr & \frac{{17820}}{{11880}} = {\left( {1 + \frac{R}{{100}}} \right)^2} \cr & \frac{3}{2} = {\left( {1 + \frac{R}{{100}}} \right)^2}.\,.\,.\,.\,.\,{\text{Put in equation}}\left( {\text{i}} \right) \cr & 11880 = P{\left( {1 + \frac{R}{{100}}} \right)^4} \cr & 11880 = P{\left( {1 + \frac{R}{{100}}} \right)^2}{\left( {1 + \frac{R}{{100}}} \right)^2} \cr & 11880 = P \times \frac{3}{2} \times \frac{3}{2} \cr & P = 11880 \times \frac{2}{3} \times \frac{2}{3} \cr & P = 5280 \cr & {\text{Half part of sum}} = \frac{1}{2} \times 5280 = 2640 \cr} $$Related Questions on Compound Interest
A. Rs. 120
B. Rs. 121
C. Rs. 122
D. Rs. 123
E. None of these
A. 625
B. 630
C. 640
D. 650
E. None of these
A. Rs. 2160
B. Rs. 3120
C. Rs. 3972
D. Rs. 6240
E. None of these
A. Rs. 2.04
B. Rs. 3.06
C. Rs. 4.80
D. Rs. 8.30

Join The Discussion