A takes 3 hours more than B to walk 'd' km. If A doubles his speed, then he can make it in 1 hour less than B. How much time (in hours) does A require to walk 'd' km?
A. 5
B. 9
C. 8
D. 4
Answer: Option C
Solution (By Examveda Team)
Let the speed of the A be a and B be bAccording to the question,
$$\frac{{\text{d}}}{{\text{a}}} - \frac{{\text{d}}}{{\text{b}}} = 3 - - - - \left( {\text{i}} \right)$$
Again,
$$\frac{{\text{d}}}{{\text{b}}} - \frac{{\text{d}}}{{2{\text{a}}}} = 1 - - - - \left( {{\text{ii}}} \right)$$
By adding equation (i) and (ii) we get,
$$\eqalign{ & \frac{{\text{d}}}{{2{\text{a}}}} = 4 \cr & \Rightarrow \frac{{\text{d}}}{{\text{a}}} = 4 \times 2 \cr & \Rightarrow \frac{{\text{d}}}{{\text{a}}} = 8 \cr} $$
So, it will take 8 hours by A to cover the distance d
∴ A requires 8 hours to walk 'd' km.
Related Questions on Speed Time and Distance
A. 48 min.
B. 60 min.
C. 42 min.
D. 62 min.
E. 66 min.
A. 262.4 km
B. 260 km
C. 283.33 km
D. 275 km
E. None of these
A. 4 hours
B. 4 hours 30 min.
C. 4 hours 45 min.
D. 5 hours

Join The Discussion