A vertical pole and a vertical tower are on the same level ground in such a way that, from the top of the pole, the angle of elevation of the top of the tower is 60° and the angle of depression of the bottom of the tower is 30°. If the height of the pole is 24 m, then find the height of the tower (in m).
A. 24√3(√3 + 1)
B. 72
C. 96
D. 24(√3 + 1)
Answer: Option C
Solution (By Examveda Team)

$$\eqalign{ & {\text{In }}\Delta ABD, \cr & \tan {30^ \circ } = \frac{P}{B} \cr & \frac{1}{{\sqrt 3 }} = \frac{{24}}{{BD}} \cr & BD = 24\sqrt 3 \cr & BD = AE = 24\sqrt 3 \cr & {\text{In }}\Delta AEC, \cr & \tan {60^ \circ } = \frac{P}{B} \cr & \sqrt 3 = \frac{{CE}}{{AE}} \cr & \sqrt 3 = \frac{{CE}}{{24\sqrt 3 }} \cr & CE = 24 \times 3 = 72 \cr & {\text{Height of tower }}CD = CE + ED \cr & = 72 + 24 = 96{\text{ cm}} \cr} $$
Related Questions on Height and Distance
A. 173 m
B. 200 m
C. 273 m
D. 300 m
E. None of these
A. 4 √3 units
B. 8 units
C. 12 units
D. Data inadequate
E. None of these
A. 21.6 m
B. 23.2 m
C. 24.72 m
D. None of these
Join The Discussion