Examveda

A(7, -8) and C(1, 4) are vertices of a square ABCD. Find equation of diagonal BD?

A. x - 2y = -8

B. x - 2y = 8

C. x + 2y = -8

D. x + 2y = 8

Answer: Option B

Solution (By Examveda Team)

Coordinate Geometry mcq question image
By the midpoint formula, $$\left( {\frac{{{x_1} + {x_2}}}{2},\,\frac{{{y_1} + {y_2}}}{2}} \right)$$
Midpoint of line AC $$ = \left( {\frac{{7 + 1}}{2},\,\frac{{ - 8 + 4}}{2}} \right) = \left( {4,\, - 2} \right)$$
O(x3, y3) = (4, -2)
(M1) Slope of line AC,
$${M_1} = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \frac{{4 - \left( { - 8} \right)}}{{1 - 7}} = - 2$$
If the lines are ⊥, then M1 × M2 = -1
- 2 × M2 = -1
M2 = $$\frac{1}{2}$$
∴ Equation of line BD
y - y3 = M2(x - x3)
y - (-2) = $$\frac{1}{2}$$(x - 4)
y + 2 = $$\frac{1}{2}$$(x - 4)
x - 2y = 8

This Question Belongs to Arithmetic Ability >> Coordinate Geometry

Join The Discussion

Related Questions on Coordinate Geometry