Determine the total surface area of a hemisphere closed at bottom. Radius of the hemisphere is $$\sqrt {\frac{{25}}{\pi }} $$ unit.
A. 75 unit2
B. 70 unit2
C. 60 unit2
D. 50 unit2
Answer: Option A
Solution (By Examveda Team)
Total surface area (TSA) of hemisphere = 3πr2Radius of hemisphere = $$\sqrt {\frac{{25}}{\pi }} $$
So, TSA = 3 × π × $${\left( {\sqrt {\frac{{25}}{\pi }} } \right)^2}$$
= 75 unit2
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion