51. Match List-I with List-II and select the correct answer using the options given below:
List-I (x[n])
List-II (X(z))
a. $${a^n}u\left[ n \right]$$
1. $$\frac{{az}}{{{{\left( {z - a} \right)}^2}}}$$
b. $${a^{n - 2}}u\left[ {n - 2} \right]$$
2. $$\frac{{z{e^{ - j}}}}{{z{e^{ - j}} - a}}$$
c. $${e^{jn}}{a^n}$$
3. $$\frac{z}{{z - a}}$$
d. $$n.{a^n}u\left[ n \right]$$
4. $$\frac{{{z^{ - 1}}}}{{z - a}}$$
| List-I (x[n]) | List-II (X(z)) |
| a. $${a^n}u\left[ n \right]$$ | 1. $$\frac{{az}}{{{{\left( {z - a} \right)}^2}}}$$ |
| b. $${a^{n - 2}}u\left[ {n - 2} \right]$$ | 2. $$\frac{{z{e^{ - j}}}}{{z{e^{ - j}} - a}}$$ |
| c. $${e^{jn}}{a^n}$$ | 3. $$\frac{z}{{z - a}}$$ |
| d. $$n.{a^n}u\left[ n \right]$$ | 4. $$\frac{{{z^{ - 1}}}}{{z - a}}$$ |
52. The minimum number of delay elements required in realizing a digital filter with the transfer function $$H\left( z \right) = \frac{{1 + a{z^{ - 1}} + b{z^{ - 2}}}}{{1 + c{z^{ - 1}} + d{z^{ - 2}} + e{z^{ - 3}}}}$$ is
53. An input x[n] with length 3 is applied to a linear time invariant system having an impulse response h[n] of length 5 and Y(ω) is the DTFT of the output y[n] of the system. If |h[n]| ≤ L and |x[n]| ≤ L for all n, the maximum value of Y(0) can be:
54. The complex exponential power form of Fourier series of x(t) is: $$x\left( t \right) = \sum\nolimits_{k = - \infty }^\infty {{a_k}.{e^{j\frac{{2\pi }}{{{T_0}}}.kt}}} $$
If $$x\left( t \right) = \sum\nolimits_{b = - \infty }^\infty \delta \left( {t - b} \right),$$ then the value of ak is:
If $$x\left( t \right) = \sum\nolimits_{b = - \infty }^\infty \delta \left( {t - b} \right),$$ then the value of ak is:
55. If x(t) = 10 rect $$\left( {\frac{{\text{t}}}{2}} \right),$$ the zero-frequency value of its spectrum is given by
56. FIR filters can be designed using
57. The auto correlation function Rx(τ) satisfies which one of the following properties?
58. If a random process X(t) is ergodic then, statistical averages
59. Which one of the following systems described by the following input-output relation is non-linear?
60. Let h(t) denote the impulse response of a causal system with transfer function $$\frac{1}{{{\text{s}} + 1}}.$$ Consider the following three statements:
S1: The system is stable.
S2: $$\frac{{{\text{h}}\left( {{\text{t}} + 1} \right)}}{{{\text{h}}\left( {\text{t}} \right)}}$$ is independent of t for t > 0.
S3: A non-causal system with the same transfer function is stable.
For the above system,
S1: The system is stable.
S2: $$\frac{{{\text{h}}\left( {{\text{t}} + 1} \right)}}{{{\text{h}}\left( {\text{t}} \right)}}$$ is independent of t for t > 0.
S3: A non-causal system with the same transfer function is stable.
For the above system,
Read More Section(Signal Processing)
Each Section contains maximum 100 MCQs question on Signal Processing. To get more questions visit other sections.
