Examveda

For a two-dimensional free electron gas, the electronic density n, and the Fermi energy EF, are related by

A. $$n = \frac{{{{\left( {2m{E_F}} \right)}^{\frac{3}{2}}}}}{{3{\pi ^2}{\hbar ^3}}}$$

B. $$n = \frac{{m{E_F}}}{{\pi {\hbar ^2}}}$$

C. $$n = \frac{{m{E_F}}}{{2\pi {\hbar ^2}}}$$

D. $$n = \frac{{{2^{\frac{3}{2}}}{{\left( {m{E_F}} \right)}^{\frac{1}{2}}}}}{{\pi \hbar }}$$

Answer: Option C


Join The Discussion

Related Questions on Thermodynamics and Statistical Physics

A system has two energy levels with energies E and 2E. The lower level is four-fold degenerate while the upper level is doubly degenerate. If there are N non-interacting classical particles in the system, which is in thermodynamic equilibrium at temperature T, the fraction of particles in the upper level is

A. $$\frac{1}{{1 + {e^{ - \varepsilon /{k_B}T}}}}$$

B. $$\frac{1}{{1 + 2{e^{\varepsilon /{k_B}T}}}}$$

C. $$\frac{1}{{2{e^{\varepsilon /{k_B}T}} + 4{e^{2\varepsilon /{k_B}T}}}}$$

D. $$\frac{1}{{2{e^{\varepsilon /{k_B}T}} - 4{e^{2\varepsilon /{k_B}T}}}}$$