If a solid cone of volume 27π cm3 is kept inside a hollow cylinder whose radius and height are equal to that of the cone, then the volume of water needed to fill the empty space is
A. 3π cm3
B. 18π cm3
C. 54π cm3
D. 81π cm3
Answer: Option C
Solution (By Examveda Team)
Volume of cone = $$\frac{1}{3}\pi {r^2}h$$Volume of cylinder = $$\pi {r^2}h$$
Volume of water = Volume of cylinder - volume of cone
$$\eqalign{ & = \pi {r^2}h - \frac{1}{3}\pi {r^2}h \cr & = \frac{2}{3}\pi {r^2}h \cr & = 2\left( {\frac{1}{3}\pi {r^2}h} \right) \cr & = 2 \times 27\pi \cr & = 54\pi {\text{ c}}{{\text{m}}^3} \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion