If the length of each side of a regular tetrahedron is 12 cm, then the volume of the tetrahedron is
A. 144√2 cm3
B. 72√2 cm3
C. 8√2 cm3
D. 12√2 cm3
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & {\text{Volume of tetrahedron}} = \frac{{{a^3}}}{{6\sqrt 2 }} \cr & = \frac{{{{12}^3}}}{{6\sqrt 2 }} \cr & = \frac{{1728}}{{6\sqrt 2 }} \cr & = 144\sqrt 2 {\text{ c}}{{\text{m}}^3} \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion