If the radii of the circular ends of a frustum which is 45 cm high be 28 cm and 7 cm then the capacity of the bucket in cubic centimetre is. $$\left( {{\text{Use }}\pi = \frac{{22}}{7}} \right)$$
A. 48510
B. 45810
C. 48150
D. 48051
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & {\text{Volume of bucket}} \cr & = \frac{1}{3}\pi h\left( {{R^2} + {r^2} + Rr} \right) \cr & = \frac{1}{3} \times \frac{{22}}{7} \times 45\left( {{{28}^2} + {7^2} + 28 \times 7} \right) \cr & = \frac{{22}}{7} \times 15 \times 1029 \cr & = 48510{\text{ c}}{{\text{m}}^3} \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion