If the radius of a sphere is increased by 2.5 decimetre (dm), then its surface area increases by 110 dm2. What is the volume (in dm3) of the sphere? $$\left( {{\text{take }}\pi = \frac{{22}}{7}} \right)$$
A. $$\frac{{13}}{{21}}$$
B. $$\frac{3}{7}$$
C. $$\frac{4}{7}$$
D. $$\frac{{11}}{{21}}$$
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & 4\pi \left[ {{{\left( {x + 2.5} \right)}^2} - {x^2}} \right] = 110 \cr & \Rightarrow 4 \times \frac{{22}}{7}\left[ {5x + 6.25} \right] = 110 \cr & \Rightarrow 20x = 10 \cr & \Rightarrow x = \frac{1}{2} \cr & \Rightarrow {\text{Volume}} = \frac{4}{3} \times \frac{{22}}{7} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{{11}}{{21}} \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion