If the radius of a sphere is increased by 4 cm, its surface area is increased by 464π cm2. What is the volume (in cm3) of the original sphere?
A. $$\frac{{11979}}{2}\pi $$
B. $$\frac{{35937}}{8}\pi $$
C. $$\frac{{15625}}{8}\pi $$
D. $$\frac{{15625}}{6}\pi $$
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & 4\pi \left[ {{{\left( {R + 4} \right)}^2} - {R^2}} \right] = 464\pi \cr & 4\left( {R + 4 + R} \right)\left( {R + 4 - R} \right) = 464 \cr & 16\left( {2R + 4} \right) = 464 \cr & 2R + 4 = 29 \cr & R = \frac{{25}}{2} \cr & {\text{Volume of sphare}} = \frac{4}{3}\pi {R^3} \cr & = \frac{4}{3}\pi \times {\left( {\frac{{25}}{2}} \right)^3} \cr & = \frac{4}{3} \times \frac{{15625}}{8}\pi \cr & = \frac{{15625}}{6}\pi \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion