If the radius of the base of a cone is doubled, and the volume of the new cone is three times the volume of the original cone, then what will be the ratio of the height of the original cone to that of the new cone?
A. 9 : 4
B. 4 : 3
C. 2 : 9
D. 1 : 3
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & R \to 1:2 \cr & V \to 1:3 \cr & {\text{Height}} \to h:H \cr & \frac{1}{3} = \frac{{1 \times h}}{{4 \times H}} \cr & \left\{ {\frac{1}{3},\,\pi {\text{ is constant}}} \right. \cr & \frac{h}{H} = \frac{4}{3} \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion