If the radius of the base of a right circular cylinder is increased by 20% and the height is decreased by 30%, then what is the percentage increase/decrease in the volume?
A. Decrease 0.8%
B. Increase 2%
C. Increase 0.8%
D. Decrease 2%
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & V = \frac{1}{3}\pi {r^2}h \cr & r \to 20\% \to \frac{{ + 1}}{5} \cr & h \to 30\% \to \frac{{ - 3}}{{10}} \cr & {r^2} \Rightarrow {5^2}:{6^2} \cr & h \Rightarrow 10:7 \cr & V \Rightarrow 250:252 \cr & {\text{Increase}} = 2 \cr & {\text{Increase }}\% = \frac{2}{{250}} \times 100 = 0.8\% \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion