If the sum of three dimensions and the total surface area of a rectangular box are 12 cm and 94 cm2 respectively, then the maximum length of a stick that can be placed inside the box is
A. 5√2 cm
B. 5 cm
C. 6 cm
D. 2√5 cm
Answer: Option A
Solution (By Examveda Team)
Let length = $$l$$, breadth = b, height = hGiven that
($$l$$ + b + h) = 12 cm
Total surface area of box
= 2($$l$$b + bh + h$$l$$)
= 94 m2 (Given)
⇒ ($$l$$ + b + h)2 = $$l$$2 + b2 + h2 + 2($$l$$b + bh + h$$l$$)
⇒ (12)2 = $$l$$2 + b2 + h2 + 94
⇒ 144 - 94 = $$l$$2 + b2 + h2
⇒ 50 = $$l$$2 + b2 + h2
Diagonal of box $$ = \sqrt {{l^2} + {b^2} + {h^2}} $$
∴ Length of longest rod that can be put inside the box
$$\eqalign{ & = \sqrt {{l^2} + {b^2} + {h^2}} \cr & = \sqrt {50} \cr & = 5\sqrt 2 {\text{ cm}} \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion